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LAGRA.NGIANFLUID DYNAYICS

USING THE VORONOI-DELAUNAY MESH

John K. Dt.lkOWiCZ

Theoretical Division, Group T-3
Los Alamos National Laboratory

University of California
LOS AknOS, NM 8“?545

ABSTRACT

A Lagrangian technique for numerical fluid dynamics is described, This

technique makes use of the Voronoi mesh to efficiently locate new neighbors,

and it uses the dual (Delaunay) triangulation to define computational cells.

This removes all topological restrictions and facilitates the solution of

problems containing interfaces and m~lltiplematerials. To improve computa-

tional accuracy a mesh smoothing procedure is employed.



I. INTRODUCTION

There are two general classes of methods for the numerical solution of

fluid dynamics problems. This classification is determined by whether Eulerian

coordinates are used, in which a prescribed, fixed mesh is employed, or whether

Lagrangian

is carried

Lagrangian

coordinates are used, in which the mesh is embedded in the fluid and

along with it. The Eulerian approac}lis the most common. The

method has several distinct advantages, but the difficulties of

implementing such a method, except in the one-dimensional case, have not made

it equally popular.

In the Lagrangian formulation the conservation equations take their

simplest form. In particular, the nonlinear convection terms which often cause

a great deal of inaccuracy associated with “-..,,crcalal.sme~rti~”, are absent.

Since the mesh travels with the fl~w,an initially adequate zoning will gen-

erally rems~n adequate. Certain features of fluid flows, such as free sur-

faces and Interfaces between dissimilar materials, travel with the flow and arc

therefore particularly well resolved by Lagrangian methods.

The two main problems with Lagrangian methods are mesh tangling and

numerical inaccuracy due to highly irregular meshes. The first problem, that

of mesh tangling, has received the most attentiun. The problem arises becausv

a mesh of fixed topology quickly becometisingular in flows undergoing large

distortions. There are two solutions: rezoning nnd reconnt>ction. In rezoning,

th~ distorted mesh is mapped onto a more regular mesh. In reconnection,

topology 1s changed Buch that mesh points acquire new neighborg. Methods

thus circumvent topology restrictions are commonly called free ‘LagranSian

methods. ?t ~hould be noted that both of thcsr methods of

mesh involve reapportionment of mass, momc.ntum,and energy

reconstruct.lnR

among the mt’s]l
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affected, and this represents a reappearance, to some extent, of the mc?esired

convective fluxing characteristic of Eulerian methods.

The second issue is less commonly addressed. Even with a satisfactory

mesh topology, contain?,ngsuitably convex cells, the evolution of the flow may

produce a hl.ghlydistorted, uneven mesh that is unsuitable for accurate approxi-

mateion.

(1)
One of the most successful Lagrangian techniques is the PIC method .

However, this cannot be considered a representative Lagrangian method, in the

sense of this paper, since there is no moving mesh. It is, rather, a prominent

example of the particle methods. In the PIC method, the flow is represented by

large numbers of particles carrying mass, momentum, and energy. The particles

are accelerated by a pressure gradient determined by counting pdrticles in a

fixed, relatively coarse mesh. Other particle schemes
(2-4)

are filoreclosely

related in spirit to molecular dynamics calculations. An interparticle force is

specified,
,Iarlow(s)

which is usually releted to the equation of state. has

shown that the PAF (particle-and-force) method
(4)

is equivalent to solving the

equations of fluid dynamics in a statistical sense. That this is true for all

such particle methods might be expected from statistical mechanic s considera-

tions. However, for the relatively small number of particles that can be

realistically used, the scatiotical fluctuations are largr and therefore It is

to be e].pettedthat solving the mean equations using an equivalent number of

mesh points would be more profitable.

A strictly Lagrangian numerical method is restricted to those limited

cases in which mesh tangling doe~ not ocuur, as in one-dimensional ~eometrics,

or in situations made effectively one dimen~ional duc to symmetry, or for

limited evolution ttie~. To ovc,rcomemesh tangling problcm~, the most common

(6)approach is exemplified by the ALE technique . In thi~ tcchniquc, a rnenhof



quadrilateral cells is applied in several phases. In essence, there is first

a Lagrangian phase, followed by a rezone phase in which mesh points are moved

~.escribed positions. The rezone may occur at every time step, in which case

to

it

is termed a continuous rezone, or it may occur after many time steps but before

the mesh is in danger of tangling, in which case some form of interpolation is

employed to transfer variables from one mesh to the other. The rezoned mesh most

frequently preserves the topology of the original mesh, and in fact it is often

just the regular mesh formed by the intersection of perpendicular straight lines.

An alternative to this type of rezoning is provtded by the free Lagrangian

methods(7’8). In these methods, the topology is changed by choosing new neigh-

bors based on some suitable criterion. In order to he free of topological con-

straints, the resulting meshes Ire triangulations in twG dimensions. The

criterion for locating neighbors may be based on the distance between points

(nearest neighbors), or on some measure of the vertex angles of the triangula-

tion. The resulting mesh is usually found by iteration
(7,8)

* or else it might

be obtained by some variation of the bin sorting algorithm for finding nearest

(4,9)neighbors . Other approaches, not described in the literature, are possible

and are being pursued. It may be said, however, that while these techniques

overcome the problems of mesh tangling they do not solvv the problcm of mesl)

irregularity.

In the present.paper we will describe a technique which addresses both of

these issue~. This technique combines the advontaRes of the free Lagrun~inn

methods with their unre~trictcd topology, with the hproved numerical accuracy

mnde posu!ble by eelective continuou~ rezonin~, A pa~ticularly efficient rncthod

for chtmging mesh topology is used whicl,is based on the construction of the

Voronoi mesh, which will bc defined and fully described later. The problem of
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mesh irregularity is overcome by allowing the mesh to slip with respect to the

flow in order to set up an essentially regular local mesh. The mesh is maintained

strictly Lagrangian in those parts of the flow where this is required, such as

at titerfaces. This slippage introduces convective flux’ag, but on the other

hand the mesh regularization greatly reduces mesh reconnection and its associated

fluxing. It should be stressed that this fluxing is not nearly as severe

as that in Eulerian calculations since the mesh still moves with approximately

the local flow velocity.

This method will be described in one of its simplest possible implementa-

tions. That is, it will be limited to two-dimensional Cartesian coordinates

and invlscid, compressible flow with an equation of state in which the pressure

is a function of the density only. Simple examples are the isentropic and the

Chaplygin equations of state. Such an implementation will illustrate all the

main features of the method in a realistic context, wirhout unnecessary compli-

cations. It is anticipated that there is nothing that would prevent the tixten-

sion of the techniques described to more generally interesting situations

involving an energy equation, viscosity, mul,tipl.ematerials, cylindrical c,(Jorcli-

nate sys~ems, or three dimens~on”.



II. THE VORONOI MESH—

Free Lagrangian techniques are characterized by mesh points changing their

neighbors during a calculation. There is a variety of techniques for locating

(7-9)
new neighbors . The Voronoi mesh is a geometrical construction associated

(10,11)
with a random distributim of points in space that appears to be uniquely

well s“uitedto this application.

The Voronoi mesh nay be defined as the subdivision of space, associated

with a random

such that all

other point.

set of points, into a set of convex polygons (polyhedra in 3-D)

space inside a polygon is closer to the enclosed point than to any

The faces of the polygons are segment~ of the perpendicular bi-

sectors ~f the lines joining neighboring points. A small fragment of a Voronoi

mesh is illustrated in Fig. 1. (We iimit the discussion here to two dimensions

but the Voronoi mesh is defined in a space of arbitrary dtiensionality
(10,11),

.

The Voronoi construction is not widely knowI~but it has fuund cpnlications in

(l?) (13) (14)
solid state and liquid state theory, astroph:’sits

(15)
, microcmulsions ,

(1,6) (17)
rock structure . and theories of computational complexity .

The Voronoi mesh possesses a number of properties, some of which are

especially important in our application. Associated with the Voronoi mesh is

a dual.mesh, fo:med by joining the neighboring points, which is called the

Delaunay triangulation
(10,18)

. This dual mesh is indicated by dashed lines in

Fig. 1. The vertices af the Voronoi polygons are called the Voronoi points. The

Voronai points arc the circumventers of the Delaun~y triangles (centers of the

circles circumscribing the triangles). E;~chline joining neighbors is the

diagonal of a quadrilateral fozmed by ?WO adjoining triangles. This diagonal

divides that pair of opposite angles of the quadrilateral that sum to more than

180°,
<17)

Contrary to the assertion of Shames and Hoey , the Ilelallnavtriangu-

lation does not have the mtiimum total side length,
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The most important property of the Voronoi mesh is that it is unique and

centtiuous. That is, a continuous translation of the points (centers) defining

the Voronoi mesh produces a continuous change in the Voronoi mesh. This process

is illustrated in Fig. 2. As neighbors change, the associated polygon side

length decreases to zero and then a new side begins to form associated with the

new neighbors. When the side length goes to zero, twc Voronoi points merge and

all four associated centers are located on the circumference of a single circle.

This shows us that a known pair of neighbors is always formed whenever another

pair of points is separatel, and vice-versa. This, therefore, obviates the need

to search for nearest neighbors.

The property of continuity assures us that we can follow the evulution of

the Voronoi mesh in this stiple manner provided the time step is sufficiently

short. A sufficient condition for this is that a point stay within its alrea3y

defined Voronoi polygon during a the step. This implies that we must ~tart

from an existing Voronoi mesh at the initial time. We are thus faced wict.the

task of constructing an initial Voronoi mesh.

There exist published algorithms for constructing arbit.ary Voronoi meshes

inthree dlmensions(’’’’o). Shamosand Hoey(17) suggest ar,ingenious algorithm

for two dimensions. For our purposes it is sufficient to start from a regular

rectangular or hexagonal arran~ement of points for which the Voronoi mesh is

obvious.

The actual algorithm for finding new neighbors consists of a single pass

through the mesh “disconnecting” the appropriate diagonal, and at the same time

“connecting” the corresponding diagonal according to which pair of opposite

angles of a quadrilateral sums to more than 180°. The continuity property

ensures that all such connections will be properly considered in a single pass,

and it 18 easy to ensxrc that redu~dnnt checking does not take place. It is of

7



interest to note that the average number neighbors h the Delaunay triangulation,

as in any planar triangulation. is six, whenever the number of boundary points

is small compared to the total number of points.
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III. EQUATIONS AND DIFFE_U?NCING

The prototypic equations which we will consider are the equations of

inviscid, compressible gas dynamics given by

a
TjtP + ~“pu = o,— (1)

(2)

together with the special equation of state

P = p(P) ●
(3)

This equation of state lmcouples and eliminates the energy equation, and thus sim-

plifies the system. Examples are the isentropic equation of state (p = p.,.(G/(C=)’l,

and the Chaplygin equation of state (p = k2(l/pU-l/n) “).

It is frequently desirable, especially for compressible flow, to formulate

difference equations which preserve the conservation property of the differen-

tial equations. This is most easily done by writing the equations in the

cc)ntrolvolume form
(21)

and

d
J

p~dV +
r

pu(u-b).~ds = -———
J

pfidS,
z“

s s

(4)

(5)

where V(t), S(t) are the the varying volume and surface of tilecontrol volume,

~ is the unit vector, normal to the surface, pointing outwards, and b iS the sLr-
—

face velocity. The surface integrals involving the surface velocity & are the

convective fluxing terms. We can define

m.
J

pdV (6)

v

to be the control volume mass and



(7)

to be the mean control volume velocity. This defines the control volume position

through

(8)

In the special case of ~ _= u there is no fluxing across the control surface and

the control volumes are Lagrangian, i.e.

and

d.
f

p~dS.
‘m–”- ~

Equation (6) could be used to define a mean density

(9)

(10)

(11)

where V =
1
vdV is the cell volume, and this gives the pressure from the equation

of state p = p(~).

The choice of control \-olumeis somewhat arbitrary. At first sight the use

(22)
of the Voronoi polygon as the control volume appears natural . However, there

are several rsasons why this is not attractive. The straightforward evaluation

of the term involving the integral of surface pressure, using the average of

neighbor cell pressures, is not consistent with the differential equations since

this pressure is not centered along the cell face. To overcome this, it is

necessary to evaluate the Voronoi point coordinates, and to l.lterpolateamong

local pres:~l~restn find the pressure at the cell vertices. This adds a con-

siderable amount f computation. Further, the cell vertices are determined

strictly from geometrical considerations and therefore do not travel with the

10



local flow velocity. This means that the cells are not

points are),and fluxing across cell faces is necessary.

I.agraagian(the cell

In addition, the c:ll

points are not centered within their cells and as we shall see later, this leads

to numerical inaccuracy.

An alternative choice is the control volume formed by all the triangles of

the Delaunay mesh surrounding a cell point, as illustrated in Fig. 3a. There

is triple overlap of these cells, so that the actual volume of a cell is equal to

a third of the total volume of its triangles. This control volume appears to be

most applicable to those variables that are defined at the cell points (or triangle

vertices). Another choice is the cell formed by joining triangle ccntroids and

(23)
the mici-pointsof triangle sides , as illustrated in Fig. 3b. ‘Thiscell

appears to be appropriate to those variables which are defined on the triangles.

The volumes of these two types of cells are equal.

Both of these cells are Lagrangian in the sense that all.vertices of the

U) , so that no fluxing is reqllired. Tbiecell move with local flow velocity [~ = _

volume (area) of the cells is

(12)

L

where ~i is the radius vector to vertex i, ordered in counterclockwise order

around cell point j (Fig. 3a), and Z is the unit vector perpendicular to the—

two dimensional plane. We

the triangle volumes. The

note that this is equal to 1/3 X V where Vk arekk

pressure force term may be expressed as

x Pi (zi.l-~i+lj (13)
.!
1

for the case where the pressures are ~efined at cell points. We note that this

is equivalent to a volume weighted average of txiangle pressure gradients, and

therefore this term is consistent with the differential formulation. If the

pressure is defined on the triangles, then using the cell of Fig. 3b



vj<~pj>=~~x~p(r
? ~ k –i-l-zi)“ (14)

If the triangle pressure is obtained at t~e centroid by linear interpolation of

the vertex pressures:

~k
“+(Pi + Pj + P~-l)s (15)

then Eqs. (S2) and (14) give precisely the same result.

As is apparcl;tfrom the ab~ve, there is a certain ireedom in the choice of

pressures [.Kcell points, as suggested following Eq. (11). Another c.,)iceis to

define the pressure on t}ietriangles, associated with assigning mass to ‘:he

triangles. Such a chotce Is natural if multimaterial problems are considered,

in which case the triangle sides fo~l,~interfaces. In this case pk = p(pk).

There are distinct differences in the numerical methods that emerge ba~ed

on these choices. In the case of vertex pressures, it is seen that the eel.

volume, Eq. (12), and hence the cell pressure is independent of the position of

the cell point. This implies that certain modes of motion become possible,

typically with a high spatial wavenumber, which are not “seen” by the difference

equations, and which can arise as a result of boundary conditions, for example.

The gro~th of such a mode can destroy the numerical solution.

typically arisee when velocity and pressure are located at the

and the problem is frequently “solved” by filtering, or by the

This behavior

same point(24’25)

use of vi~cotts

“node couplers”. The use of tria~.glepressures eliminates these coupling prob-

lems, but it is not without its own difficulties. In the limit of incompressible

flow, the use of triangle pressures implies the constancy of triangle voiumes.

As Fritts and Boris
(8)

point out, it is not possible to achieve this for most

boundary conditions, in a confined volume. While in compressible flow Lllisgeo-

metrical restriction is less veverc, It can produce stron8 velocity fluctuktions

of strictly numerical origin. We have used a linear combination of these two

12



methods and this frequently works well. There are many other possibilities for

getting around these problems and they must be investigated in the future.

The cells ‘wehave described are Lagrangian only while neighbors do not

change. When neighbors

momenta and energy must

momentum, and energy in

do change, cell volumes change, and therefore cell masses,

change. This requires a local reapportioning of mass,

a conservative fashian. This is particularly s’craight-

forward using the cell o: Fig. 3a, since a quadrilateral whose

as a result of a neighbor change is shared by all the affected

portant point is that following the reapportionment, the mass,

energy changes are added to the respective cell values, and at

diagonal clanges

cells. An im-

momcntum, and

present it is

not known how to do this reversibly. Thus the process of ‘reapportionmentis

inherently diffusive and corresponds to a loss of information. Reapportion-

ment mav be considered as a form of fluxing that takes place instantaneously

rather than as a cmtinuous process.

Temporal differcncing is explicit and follows the practice of PAF
(4),

n+l n ‘<p’p
‘j % -%) - - ‘t ‘j - jn’

n+l n

% - %
-Aty;+? (

This form uf differe~(ing has stability advantages
(4)

and is time centered for

position x for constal~ttime steps. The completely time centered scheme is

implicit, and although time-reversible and therefore nondiffusive, it dots not

nppea-.’to be worthwhile in view of the nonreversibility of the reailportionrnent

discussed above.



Iv. ~SH SMOOTHING

We note that in applying Eqs. (4-8) one makes the approximation

where $ 1s typically p or p~. Expanding $ in a Taylor series, we see that

wh,ere

(IR)

Thcret’ore,our approximation is first order accurate if the cell point is lo-

cated within the cell, second order accurate if the cell point is at the cell

centroid, and t’neapproximation 1s further Lmproved if the cell is symnetric, so

thnt the product of inertia of the cell urea itizero. Thu construction of the

Dclauna:’mesh ensures that our method is at worst first order. }Iowcver, Ln pr;lc-

tice the rncshcan become very irre~ular (see uxamplds in Ref. (7)), wltllcell

points far from the cell centrolds.

Therefore, to improve accuracy, we Introduce a me~h timuothlngprorcd~lr~’ut

each time ~tcp fullowing the LagranRian part of thu culculatlnn, TI\kYCC’]] C(’ll -

troid~ arr computud at the end of the La~ran~ian phaw and thu CU1l polntb HI.I’

moved nome frac*ion of the distance (typically 0.5) towtirdsthcm. Thl~ drfjllvs

the ❑enh velccity ~-in the fluxing terms. Of rourr.w, thi~ will not result lH th{I

cell point being exactly at the c~ntruid but because of thr ~mull timi~strp!:

r~quirad for both ●ccuracy ●nd otabillty, the CQ1l point will at iIlllimr~ IW

M the naar vicinity of the centroicl. The fluxfn~ t~rms in R.ia.(4,5) are

evaluated anrnuming ● linear variation of 0, u, and b nlong thr ccl] fo~’vn.

14



It is straightforward to retain a Lagrangian mesh sherever it is nexessarY,

such as at interfaces or at free surfaces. Frequently, there are large parts

of the flow where the mesh does not get distorted in the Lagrangian calculation

and it is possible, as well as desirable, to avoid mesh smoothing in these

regions. As one result of the mesh smoothing, there is far less neighbor

switching since the mesh tends to approach a hexagonal configuration, so that

there is, in effe-t, a trade off between the fluxing due to reapportionment

and the fluxing due to smoothing. At no tl.meis the fluxing as severe as in

Eulerian calcule,cionssince, on the average, the mesh still travels with the

f1:.)W.
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v. COMPUTATIONAL EXAMPLE

P.ta an illustration of the technique described, at itficurrent ntate of

development, a computation of the symmetric, normal impact of two Chaplygin

jets was carrtcd out. This is an attractive test problem because it in-

volves a free surfnce, and because certain annlytiunl results are nvailahle

[26] for comparison with the caluulntton.

Two 2-dtmensionnl jets of uniform width (h = 0.01 m), un{form density

(Pm “ 8.9 x 103 kg/m3), are assumed to undergo normal Inpact. The jets nre

composed of a single material sntl~fving the Chnplygin equation of state

(~,ec dcftnltion fnllnwing I?q.3. k2 = 1.21A A 106 CPiIkg/m3). The jets

travel at 1.96 x 10 m/s, which corl..:~on~utn n Mn~h nlm!)~ir FI= = n.~ At th~’

unpcrturherl condittonR.

The cnmputntton was pcrfrirmt’rl us[ng triangle prt=~~tlre~ only, rnrsh

smoothfn~ wns pcrform~’d In the roglnn wh(’rr IAPI/p= > ~.nl, nnd tho timw

~tcp wns control Iuri in thr l,n}:r~lnp,lnn phnso by limttlng thu rntr nf chilngl’

nf the porfmrtcr of trlnngloH.

Flgure~ 4 :Ind 5 fllustrnto the onrlv dcv(’lnpm(’nt of th(’ fro(’ H\Irfn~.e.

A hlgll don~ity znno Is formrd nhnvc the plnnc of ~’ontnct, nnd It dl~~lpnto~

nn it prnpngntcm nwny frnm th!~ plnno IIN tho Htrndv stnto IN npprmlt’hcfl.

Ftgure 6 shows thr me~h, nnd Ffxurr 7 sllnw~ tho drnHftv cnnt’nilr~ nnd VPIIILIf-

ty vectors nt 25 UM fOllnwlnR impnt~t, tho tormlnnttnn nf thr cnlclilntlnn6

F’igtlro 6 FIhOWN ~1 nurnhrr of pnlntN p!nttod nlnn~ the rxn~ht frrr nurfnce nt

Htcnrlv Hl,ntr, for (:nmpnrls(lno l%{! n~rurmvnt IH rrilsonnhlc 111111 ml~ltl ho lm-

provrd hy ~’ontlnulng tho cnmplltntlnn fur~hcr. Tho r+t~~nrlv ntntr frvo n~lrfn,’u

nhnpo IFI g{vrn hy thr eq~lnt Inn

1()



Y - ln[(ex+ I)/(ex - 1)] s

where

(19)

x- n
(2X -h) ,

r
2h 1-M:

and

‘“’da’’-’)●

Figures 8 and 9 show the comparison of the calculation with the exact

distributions of density and velocity along the x-axis, the plnnc of con-

tact. The den6ity and velocity distrfbut-on alonR thi~ axjn are Uivcn by

the tranacendentnl equation

u - k2 N/p:,

whcrc

~=’q’’wQ2c2-1) ,

●nd

(2(?)

J
..—

C-(I+ I-t+)ht .
0 m

17



The agreement with the exact distributions is reasonable, except for

the density at the stagnation point. This discrepancy may be due to the

calculation not having reached the steady state.

In conclusion, this paper describes a new and promising technique for

Lagrangian numerical fluid dynamics. However, much more research remains to

be done to investigate variations in the scheme and their effect on the ac-

curacy and performance of the technique.
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FIGURE CAPTIONS. —..—

Fig. 1. A fragment of a Voronoi mesh and the associated Delaunay triangula-
tion.

Fig. 2. The co~~tinuo~stransition of the Voronoi mesh as p~ints 1 and 3
move closer t~gether and are con~ected as neighbors, while points 2
and 4 are disconnected.

Fig. 3. Two alternative definl.tioasof computational cells associated wit>
tkiecell poirt j.

Fig. 4. The mesh and the denstty zontours, illustrating the early developm-
ent of the free surface, at t = 2.65 us.

Fig. 5. The mesh and the density contours at t = 6.77 US.

Pig. 6. The mesh at t = 25 ps, and the shape of the free surface from the
exact solution at steac!ystate.

Fig. 7. The density cantotirsand velocity vectors at t = 25 us.

Fig. 8. The exact steady state and the computed (t = 25 us) density profile
along the planfiof impact.

Fig. 9. The exact steady state and the computed (t = 25 us) velocity pro-
file along the plane of impact.
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